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Avenue Georges Lemaı̂tre 4, 1348 Louvain-la-Neuve, Belgium

SUMMARY

In this paper some preliminary results concerning the application of the high-order discontinuous Galerkin
(DG) method for the resolution of realistic problems of tidal flows around shallow water islands are
presented. In particular, tidal flows are computed around the Rattray island located in the Great Barrier
Reef. This island is a standard benchmark problem well documented in the literature providing useful
in situ measurements for validation of the model. Realistic elements of the simulation are a tidal flow
forcing, a variable bathymetry and a non-trivial coastline.

The computation of tidal flows in shallow water around an island is very similar to the simulation of the
Euler equations around bluff bodies in quasi-steady flows. The main difference lies in the high irregularity
of islands’ shapes and in the fact that, in the framework of large-scale ocean models, the number of
elements to represent an island is drastically limited compared with classical engineering computations. We
observe that the high-order DG method applied to shallow water flows around bluff bodies with poor linear
boundary representations produces oscillations and spurious eddies. Surprisingly those eddies may have
the right size and intensity but may be generated by numerical diffusion and are not always mathematically
relevant. Although not interested in solving accurately the boundary layers of an island, we show that a
high-order boundary representation is mandatory to avoid non-physical eddies and spurious oscillations.
It is then possible to parametrize accurately the subgrid-scale processes to introduce the correct amount
of diffusion in the model. The DG results around the Rattray island are eventually compared with current
measurements and reveal good agreement. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most of the ocean models in use since 40 years are inspired by the work of Bryan [1]: the underlying
discretization is based on finite difference schemes on structured grids. The use of unstructured
meshes offers many advantages and is now commonly used in many fields of engineering appli-
cations. The development of such an ocean model based on unstructured grids does not consist
in a simple extension of structured grid models but requires to rethink a complete model from
the start. Unstructured meshes allow an accurate representation of complex geometrical features
such as bathymetries or coastlines. They allow one to increase the resolution in regions of large
gradients as the coasts, shelf breaks, polar fronts or transient processes as the Gulf Stream.

Several unstructured grid ocean models are under study since a decade using the finite element
method [2–6], finite volumes [7, 8] or spectral elements [9]. The discontinuous Galerkin (DG)
finite element method is a new trend for solving engineering problems where advection plays an
important role [10–13]. It is now under study for ocean applications [14–17]. The DG method
combines the advantaging features of both continuous finite elements and finite volumes. High-
order polynomial function spaces are used to increase the resolution within elements without
enlarging the stencils, while discontinuities allow one to build high-resolution advection schemes.
The DG method also provides a simple and efficient way to perform h- and p-adaptivity [18, 19] and
exhibits very interesting properties as a superconvergent behaviour for dissipation and dispersion
errors [20–22], which is particularly interesting in many ocean processes. Yet the application
of high-order DG method to realistic processes of ocean modelling is still a challenging issue,
especially because of the complexity of the geometrical features as coastlines or bathymetry.

Section 2 presents the governing equations and their classical DG discretization including the
derivation of the weak formulation and the flux computation with Riemann-like solvers. The
following section deals with the issue of the boundaries discretization in the context of quasi-
steady flows at low Froude numbers. Bassi and Rebay [23] have shown that a poor representation
of the boundaries with piecewise linear edges does not lead to a steady-state solution for the
benchmark of a cylinder in a mean flow using the Euler equations. The high-order DG method
produces oscillations and spurious eddies in the wake of smooth bluff bodies with steady flow
computations. We observe the same behaviour with the shallow water equations. A converged
solution is obtained only with a more accurate boundary representation as a high-order mapping
between the reference element and the real one or with techniques as the smoothing of the normals
as proposed by Krivodonova and Berger [24]. However, in the presence of thousands of islands
and coasts, we are restricted to the use of coarse meshes, which means a relatively low mesh
resolution close to the boundaries. With too coarse meshes and especially irregular bluff bodies
as islands, we observe that spurious oscillations are still generated with the reconstruction of a
continuous linear representation of the normals, while the use of high-order mappings still avoids
oscillations. Moreover, the continuous linear normals do not allow an accurate representation of
the shape of boundaries for very irregular bluff bodies.

Finally, the last results deal with the computation of tidal flows around the Rattray island
located in the Great Barrier Reef. The study of a hydrodynamic model of the Great Barrier Reef
is particularly interesting since the coastal processes in this region exhibit the same kind of range
of scales than the world ocean in a smaller domain of computation [25]. The main large-scale
forcing is the oceanic inflow of the East Australian Current coming from the Coral Sea. This
current flows westward into the shelf region and splits into two branches, creating a northward and
a southward flowing current [26]. Those large-scale long shore currents may be strongly deviated
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by the wind, the tides and the topography. Thousands of islands and reefs generate small-scale
eddies and tidal jets [27]. It is mandatory to simulate all scales simultaneously since small- and
large-scale processes experience strong interactions. Moreover, increasing the resolution in a small
area allows one to study this area without the drawback of imposing arbitrary boundary conditions
around it.

In this framework of a large hydrodynamic model or world ocean model, we wish to perform
flow computations around shallow water islands with meshes as coarse as possible. The realistic
test case of the Rattray island is particularly interesting because many in situ measurements of
elevation, velocity, tidal forcings, topology and bathymetry are available to validate and calibrate
the model. It is clear that we are not interested in solving the boundary layer of the island. All
we expect is to reach the correct rate of vorticity and the correct dispersion relation for wave
propagation.

2. DG DISCRETIZATION OF THE SHALLOW WATER EQUATIONS

In the general mathematical framework of the DG methods, we consider a system of conservation
laws expressed in the conservative form:

�U
�t

+∇ ·F(U)=S(U)+∇ ·D(U) (1)

where U is the vector of unknown fields, F is the convective flux matrix containing the pressure
and transport terms, S is the vector containing the so-called source terms that do not involve any
derivative of the unknown fields and D is the diffusive flux matrix.

The domain of computation � is divided into a set of Ne non-overlapping elements �e:

�=
Ne⋃
e=1

�e

The standard DG weak formulation is obtained by multiplying Equation (1) by a smooth function
Û and integrating on each element �e:

�
�t

∫
�e

UÛd�e+
∫

�e

∇ ·F(U)Ûd�e=
∫

�e

S(U)Ûd�e+
∫

�e

∇ ·D(U)Ûd�e (2)

We seek an approximation Uh of U such that Uh ∈Uh
p with Uh

p the finite dimensional space
composed of polynomial functions of order at most p on �e. We define on each element a discrete
representation Uh of U as

Uh =
Nd∑
i=1

�iUi ∈Uh
p

where Ui are the nodal values, �i are a set of independent shape functions and Nd is the number
of degrees of freedom on one element. Although there are many possible choices for the shape
functions, we will consider Lagrange shape functions in the following developments. Therefore,
the number of degrees of freedom on each element is related to the polynomial order p by the
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relation Nd=(p+1)(p+2)/2. The weak formulation is then discretized as

�
�t

∫
�e

UhÛh d�e+
∫

�e

∇ ·F(Uh)Ûh d�e=
∫

�e

S(Uh)Ûh d�e+
∫

�e

∇ ·D(Uh)Ûh d�e (3)

with the test function Ûh ∈Uh
p.

Two neighbouring elements in continuous finite element method share common nodes that
ensure the continuity of the finite element approximation and that allows an information transfer
between elements. It is mandatory to ensure the same coupling between elements with the DG
method, by the following integration by parts on the convective and diffusive terms:

�
�t

∫
�e

UhÛh d�e−
∫

�e

F(Uh) ·∇Ûh d�e+
∫

��e

F(Uh) ·nÛh d�e

=
∫

�e

S(Uh)Ûh d�e−
∫

�e

D(Uh) ·∇Ûh d�e+
∫

��e

D(Uh) ·nÛh d�e (4)

where n denotes the outgoing unit normal to element �e, and �e denote the edges of this element.
The main difference with the continuous finite element method lies in the fact that the discrete

solution presents different values, say UL and UR, at the discontinuity between elements. Formu-
lation (4) is thus somehow ambiguous and incomplete since the discretization leads to a discrete
normal flux function F(Uh) ·n depending on both right and left values at the discontinuity:

F(Uh) ·n=F(UL,UR) ·n (5)

This flux function has to be properly defined since it will be responsible in a large part for the
accuracy and robustness of the scheme. This discontinuity provides a way of introducing accurate
advection schemes, which makes the DG method very efficient for advection-dominated processes.
The flux computation is based on the idea of the Riemann solver and the characteristics theory:
the hyperbolic system of equations is decomposed into a set uncoupled scalar advection equations,
advecting the Riemann invariants along characteristic curves. The flux function used in this study
is based on the simple Lax–Friedrich flux FLF:

FLF(U)=0.5(F(UL)+F(UR))+0.5|�|max(UL−UR) (6)

where |�|max denotes the maximum absolute value of the eigenvalues of the system, i.e. the
propagation speed of the information. Other more complex Riemann-like solvers can be used as,
for instance, a Godunov solver or a Roe solver [28–31], whose expression for the shallow water
equations may be found in [19, 32]. However, the results obtained for the shallow water equations
do not present significant differences for any of those fluxes.

The discontinuities between elements also lead to many different ways of treating the diffusive
flux [33]. Indeed, the solution gradients are not well defined at the discontinuities, as the solution
itself. In this study we consider the classical local discontinuous Galerkin (LDG) method proposed
by Bassi and Rebay [34, 35]. This technique consists basically in computing the solution gradients
at the interfaces as a function of the gradients on both surrounding elements and of the jumps of
the solution. This method is well suited for explicit time schemes as we consider in this paper.
However, other techniques for computing diffusion operators will be considered in future works
for handling implicit time schemes more easily, as the interior penalty methods [36, 37].
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2.1. Application to the shallow water equations

The set of the shallow water equations represents the flow of a thin layer of incompressible
fluid under the influence of a gravitational force in a rotating framework. Those equations can
be obtained from the vertical integration of the incompressible 3D Navier–Stokes equations with
impermeability boundary conditions on the surface and bottom of the ocean [38, 39].

Let us first express the conservation equations in the generic form (1). The mass conservation
equation of the shallow water model reads

��

�t
+∇ ·(Hv)=0 (7)

where v=(u,v) and � are the mean horizontal velocity and the sea surface elevation, respectively,
H =h+� is the water elevation and h is the bathymetry, water depth below the mean sea level,
as illustrated in Figure 1. The momentum conservation equation reads

�Hv

�t
+∇ ·(Hvv)+gH∇�+ f ez×Hv=ss−�v‖v‖+�∇ ·(H∇v) (8)

where the Coriolis parameter, the acceleration due to the gravity, the mean water density and
the horizontal eddy viscosity are denoted by f,g,� and �, respectively. Vector ez denotes the
local normal unit vector to the geopotential surface. The diffusion term does not represent the
viscous terms of the Navier–Stokes equations, which are neglected, but represents the subgrid-
scale processes. It is then mandatory to modelize the subgrid-scale viscosity � as a function of
the element size, especially in multi-scale computations as finite element ocean modelling. At the
bottom, the friction is parametrized with a quadratic relationship where ‖v‖ is the amplitude of the
velocity and � is a friction coefficient. At the sea surface, the wind stress is given by ss =(�x ,�y).
Both Equations (7) and (8) can be injected in the generic form (1), by defining U, S, D and F as
follows:

U =
⎡
⎢⎣

�

Hu

Hv

⎤
⎥⎦ , F(U)=

⎡
⎢⎢⎢⎢⎢⎣

Hu Hv

Huu+g
H2−h2

2
Huv

Hvu Hvv+g
H2−h2

2

⎤
⎥⎥⎥⎥⎥⎦

S(U) =

⎡
⎢⎢⎣

0

g��xh+ f Hv+ �sx −�u‖v‖
g��yh− f Hu+ �sy−�v‖v‖

⎤
⎥⎥⎦ , D(U)=

⎡
⎢⎢⎣

0 0

�H�xu ��yu

�H�xv ��yv

⎤
⎥⎥⎦

(9)

Large-scale ocean processes as basin gyres or anticyclonic eddies are usually dominated by the
geostrophic balance, i.e. the balance between the pressure term and the Coriolis term. The aim is to
compute the perturbations of this equilibrium as the Rossby waves or the advection terms, but the
pressure term gH∇� is the dominating term in the system for that kind of processes. To express
it as flux with a divergence form, we observe that it must be expressed as g∇(H2−h2)−g�∇h.
With a non-constant bathymetry, the dominating term of the system is thus split into two parts: one
computed through the fluxes with an approximate Riemann solver and the other one considered
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Figure 1. Shallow water configuration for water depth H with a time-independent bathymetry h and a
relative elevation �, usually several orders of magnitude lower than the bathymetry.

as a source term. It is then mandatory to integrate accurately those two terms to avoid spurious
gravity waves. Indeed, strong oscillations and spurious waves may be observed, especially with
a strongly varying bathymetry, when using quadrature-free techniques or very distorted curved
elements, which may involve lack of accuracy in the integration process.

We must finally note at this point that, depending on the application, it could be useful to
consider an alternative formulation of the momentum equation, obtained by substituting (7) into
(8) and dividing by H :

�v
�t

+v ·∇v+g∇�+ f ez×v= s
s

H
−�

v
H

‖v‖+ �

H
∇ ·(H∇v) (10)

Although both formulations are strictly equivalent in the continuous world, their discretizations
may lead to quite a different discrete algebraic system. Indeed, the advection terms have to be
split into two terms to be expressed in the divergence form, while the pressure term g∇� is no
more splitted. Therefore, where the pressure term appears to be the main driving term, this second
formulation could appear to be more robust and accurate since a lack of accuracy in the integration
will not generate spurious waves as in the first formulation.

3. COMPUTATION OF SHALLOW WATER FLOWS AROUND OBSTACLES

It is well known that the discontinuous Galerkin method is very accurate and efficient for computing
advection-dominated processes because of, for instance, the simple use of high-order elements
with accurate advection schemes, the very efficient error estimation in the inter-element jumps, or
the highly parallelizable nature of the method. In particular, the DG method becomes very efficient
when using high-order function space. Indeed, it exhibits superconvergence properties for the
dispersion and dissipation errors, O(h2p+3) and O(h2p+2), respectively, and for the discretization
errors with a convergence rate of O(h p+1). The purpose of the present study in thus to investigate
the use of high-order polynomial orders for computing shallow water flows on coarse meshes in
the context of ocean modelling in order to benefit from those convergence properties.

A first simple benchmark consists in a cylinder in a constant mean flow. Without the diffusion
process, we should observe the convergence to a well-known steady solution, as for the Euler
equations. The second more realistic benchmark of the Rattray island will then be investigated and
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the results will be compared with in-situ measurements. The following computations have been
performed using an explicit classical Runge–Kutta time scheme.

3.1. Cylinder test case

Let us consider a cylinder in a mean flow with a Froude number of Fr=0.2. This non-dimensional
number is similar to the Mach number in the Euler equations and is defined as the ratio of the fluid
velocity to the gravity wave speed. The source terms and dissipation processes are not considered,
which implies no diffusion term, no Coriolis force, no bathymetry gradient and no bottom or
surface stress. We use a bathymetry of 1m, which corresponds for a gravitational acceleration of
g=9.81ms−2 to the imposition of a zero elevation and a constant velocity of 0.2

√
9.81∼=0.63ms−1

on the boundaries. A slip boundary condition on the cylinder is also mandatory to obtain a steady
converged solution.

With the use of the DG method and a piecewise linear representation of the cylinder boundary,
the solution does not reach the expected steady state unless a special treatment of the boundaries
is applied, as shown by Bassi and Rebay for the 2D Euler equations [23]. Oscillations appear in
the vicinity of the obstacle. They grow and propagate in constant or quasi-constant mean flows
as tidal flows, leading to the creation of vorticity and of a wake behind the bluff body. Those
oscillations are enforced when using higher polynomial orders. This issue is illustrated in the left
part of Figure 2: strong oscillations are observed with second-order Lagrange shape functions and
a piecewise linear representation of the boundaries, generating non-physical eddies in the wake of
the cylinder and polluting the solution far away from the boundaries.

Many techniques allow one to obtain the expected solution. A very cheap and efficient technique
proposed by Krivodonova and Berger [24] consists in building a continuous representation of the
normals and in using those smooth normals in the Riemann solver computation, while keeping
the discontinuous representation in the integration on the edges. This continuous representation
is depicted in the left column of Figure 3. This technique yields the expected steady solution as
depicted in the right part of Figure 2.

Figure 2. Water elevation field for a mean flow around a cylinder with second-order Lagrange
shape functions and a Froude number of Fr =0.2. Oscillations appear with a classical piecewise
linear representation of the boundaries (left) and prevent convergence to the steady solution. The
smoothing of the normals proposed by Krivodonova and Berger suppresses those oscillations

and leads to the converged solution (right).
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542 P.-E. BERNARD, J.-F. REMACLE AND V. LEGAT

Figure 3. The continuous representation of the normals according to Krivodonova and Berger (left) is
quite similar to the normals computed from a high-order mapping of the triangles (right).

However, the drawback of this technique lies in the reduction in the convergence rates when
using sufficiently high-order shape functions. Moreover, although this technique works perfectly
for sufficiently refined meshes and smooth bluff bodies, oscillations may rapidly appear when using
very irregular bluff bodies. Finally, the linear reconstruction of the normals does not represent
accurately very irregular obstacles, as depicted in the left part of Figure 4.

Another approach used in this study consists in building high-order meshes, i.e. using curved
triangles with high-order polynomial mappings, to obtain a better representation of irregular bluff
bodies. We consider a triangle composed of a set of Nc coordinates X. A possible continuous
representation x∈R2 of the triangle is given by the simple polynomial mapping

x j =
Nc∑
i=1

	i (n)Xi, j , j =1,2 in 2D (11)

where 	(n) denotes the shape functions corresponding to the coordinates X in the bi-dimensional
parametric space n=(
,�).

A possible representation consists in using Lagrange shape functions as for the polynomial
representation of the solution. A mapping of order q is then obtained for a number of coordinates
Nc such that

Nc= (q+1)(q+2)

2

However, the high-order Lagrange shape functions present nodes located inside the triangle. The
position of those nodes is somehow arbitrary and does not bring more information on the boundary
representation, while the nodes’ coordinates on the edges are computed, for instance, as equidistant
on the parametric curve representing the boundary. We thus use in this study Serendip shape
functions, i.e. incomplete shape functions at order q , with nodes located only on the edges of the
elements. We thus specify for a q-order Serendip mapping a number of coordinates:

Nc=3q
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Figure 4. Different normals representations on the west (upper row) and east (bottom row) parts of
the Rattray island. The continuous representation of the normals (left) becomes quite different from the
normals computed from a high-order mapping of the triangles (right) for very irregular bluff bodies.

Let us introduce the following notationPq
p, denoting a p-order representation of the solution, using

the Lagrange shape function, and a q-order incomplete Serendip mapping for the representation
of the curved mesh.

Considering smooth bluff bodies as the cylinder, the continuous linear representation of the
normals as proposed by Krivodonova and Berger is quite similar to the normals based on a high-
order polynomial mapping, as depicted in Figure 3 where a third-order mapping is used. However,
the difference becomes significative on very irregular boundaries and coarse meshes as depicted in
Figure 4. For this kind of irregular bluff bodies, the use of high-order mappings provides a better
representation of the boundaries and seems to reduce the generation of the spurious oscillations.
One can observe in Figure 4 that the mesh has been optimized to decrease the elements’ distortion:
not only the elements that have a common edge with the domain boundaries are curved. Indeed,
it is often necessary to curve some internal edges in order to maintain a valid mesh [40]. The
high-order curved meshes used in this study have been generated by the mesh generator GMSH
freely available at http://geuz.org/gmsh/ and described in [41].

The results obtained with high-order mappings are depicted in Figure 5. We observe the influence
of both the mesh resolution and the polynomial order with third-order mappings. We consider two
different meshes (white triangles) of 674 (upper row) and 245 (lower row) elements. The first
computation on the finer mesh (left part of the figure) uses a second-order polynomial representation
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Figure 5. Water elevation fields for a mean flow around a cylinder with third-order mapping meshes
of 674 (upper row) and 245 (lower row) elements. Obtaining the converged steady solution on the
coarser grid requires a polynomial order up to order 6, while the order 4 is sufficient on the finer
mesh. Only eight triangles are sufficient to accurately represent the boundaries with a third-order
mapping. The relative computational times � have been normalized with the maximum computation

time obtained for the P1
1 representation in Figure 6.

of the solution, P3
2. This representation produces a relatively smooth solution, but the expected

converged solution is not obtained because of the high sensitivity of the method to the asymmetry
of the mesh. The pressure becomes higher on the right-hand side of the cylinder, leading to
an oscillating solution with non-symmetric stagnation points. One can thus increase the polynomial
order or the mesh resolution. The fourth-order representation, P3

4, on the same mesh, leads to
the expected solution. Decreasing the mesh resolution (bottom row of the figure), the polynomial
order has then to be increased up to order 6 to obtain the converged solution.

We observe that only eight triangles are sufficient with a third-order mapping to accurately
represent the cylinder boundaries. However, the convergence of the solution to the exact steady
state also requires a sufficient resolution, which can be reached by a sufficiently high polynomial
order and/or a sufficiently high mesh resolution. We also observe in Figure 6 that the mesh
resolution does not replace the accurate representation of the boundaries: the solution is obtained
with a very fine grid of 20 016 triangles and a P1

1 representation, for which the converged solution
is not reached. The solution clearly presents strong oscillations in the vicinity of the cylinder and
the amplitude of the jumps in the wake of the bluff body suggests a high error compared with
the high-order mappings solutions. The comparison between the high-order P3

6 and the linear P1
1
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Figure 6. Elevation field (right) computed on the fine mesh (left) with a P1
1 representation. Although

using a relatively fine mesh (20 016 elements), the poor representation of the boundaries generates
strong oscillations on the boundaries and in the wake of the cylinder and does not allow the obtention

of the expected converged solution.

Figure 7. Close-up views of the cylinder vicinity for comparison of the solutions obtained with the P3
6

representation on the 245 elements mesh (left) and a P1
1 representation on a 20 016 elements mesh (right).

The P3
6 computation presents about nine times less degrees of freedom for a more accurate solution.

representations is depicted in the close-up views of Figure 7. We observe that the solution is clearly
more accurate with the P3

6 representation, which presents about nine times less degrees of freedom
than the P1

1 representation. The relative computational costs � of the different computations given
in Figure 5 have been normalized with the maximum computational time, i.e. the one of the P1

1
computation. Considering that the converged steady solutions are reached only for the P3

4 and P3
6

representations with meshes of 674 and 245 elements, respectively, the lower computational time
corresponds clearly to the use of the higher order, i.e. p=6, as expected.

Such curved meshes represent a powerful tool for handling hp adaptivity on complex geometries
and boundaries [40]. However, the creation of curved meshes with really high-order mappings
is sometimes quite difficult without generating jacobian matrices with negative determinants,
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or simply bad-shaped elements. Indeed, even if presenting strictly positive determinants of the
jacobian matrix, very distorted elements cannot be used since the integration errors become very
significative. Mesh generation procedures that adapt the element size and mapping order to the
boundary curvature are essential tools for meshing really complex domains as the ocean with a
low number of curved elements, but it is mandatory to keep the elements’ distortion as low as
possible.

We observe with this first test case that the DG method with the shallow water equations presents
the same behaviour than with the Euler equations. With unstructured meshes around bluff bodies,
an accurate representation of the boundaries and a sufficiently high resolution are mandatory to
reach the expected converged solution and to avoid spurious eddies production when working with
coarse meshes.

Techniques such as the smoothing of the normals are cheaper than the use of high-order mappings
in terms of computational costs and are working perfectly well for flows around smooth bluff
bodies. However, this method does not suppress oscillations for very irregular bluff bodies with
sharp coasts and does not represent irregular boundaries in an accurate way, while the high-order
mapping still produces smooth solutions.

3.2. Rattray island in a constant mean flow

The Rattray island is located at the coordinates 19◦59′S, 148◦33′E in the Great Barrier Reef near
Australia. The island is 1.5 km long, 300m wide and lies in well-mixed water. The surrounding
bathymetry is approximately of 25m but presents some strong varying gradients as depicted in
Figure 12. This site has been chosen for many studies and measurements. Indeed, the surrounding
waters are turbid, which allows aerial observations of the circulation and the scales are the typical
coastal water scales [42].

This is thus a particularly interesting test case for numerical computations since it provides
realistic and complex bathymetries and boundaries as shown in Figure 12, but also many measure-
ments performed during several days, providing useful data for the tidal forcings (see Figure 11)
and for comparison in the wake of the island.

The tides are almost perpendicular to the main island direction, creating eddies in its wake.
Numerically speaking, those eddies are generated through the subgrid-scale processes, which means
that a diffusion term has to be introduced and parametrized to reproduce those processes, with
a larger diffusivity than the molecular diffusivity. The curl operator applied to the momentum
equation yields an advection equation of the vorticity. In a constant mean flowwith a flat bathymetry,
no source term or diffusion term and slip boundary conditions, there should not be any vorticity
generation inside the flow even in the presence of very irregular bluff bodies.

In the first numerical experiment we consider the Rattray island in a constant mean flow with a
Froude number of Fr=0.1 with a flat bathymetry of 25m. No diffusion, Coriolis or bottom stress
terms were considered while a slip boundary condition is imposed on the island’s coast. The flow
is then supposed to remain steady without vorticity production.

This experiment illustrates the issue of boundary discretization in ocean processes. The mesh
of the idealized Rattray island depicted in Figure 8 is used with both P1

4 and P2
4 representations.

Figure 9 shows the non-steady solution obtained with the first-order mapping: the linear discretiza-
tion of the boundaries combined with a high-order DG scheme produces oscillations and numerical
diffusion, responsible for the creation of non-physical eddies even with slip boundary conditions.
Their size and amplitude depend on the boundary representation and on the elements size, which
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Figure 8. Mesh of the idealized Rattray island used for the Rattray experiments in a constant mean flow,
with fourth-order polynomial function spaces and both first- and second-order mappings.

htapselcitraPn fieldoitavelE

Figure 9. Without variable bathymetry, diffusion, Coriolis or bottom stress term, the expected steady-state
solution in a constant mean flow is not obtained with a P1

4 representation. Spurious eddies are created
on the poorly discretized boundaries; their size is the smallest element size.

means that we have no control on those spurious eddies. The smallest eddies ejected from the
island edges merge in the wake of the island to create larger eddies. Those larger eddies always
grow until they reach a length of the order of the island length. They finally reach the right sizes
and amplitudes but not for the right reason. It can be shown that with a no slip boundary condition,
the amount of vorticity expelled from the island coastlines does not depend on the boundary layer
details, but depends only on the mean flow velocity, and the eddy size depends mainly on the
length of the obstacle.

The second experiment in Figure 10 is obtained with exactly the same parameters, mesh and
solution shape functions, but with a second-order mapping. The sufficiently accurate boundary
representation leads to the expected steady solution without any spurious eddy. The DG scheme
with appropriate boundary representation provides an advection scheme that does not require the
use of numerical dissipation for its stabilization and avoid spurious oscillations. The vorticity and
eddies generated then depend only on the subgrid-scale parametrization and can then be properly
controlled.
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htapselcitraPfieldnoitavelE

Figure 10. Steady-state solution for a constant mean flow with Fr=0.1 around the Rattray island without
bathymetry, diffusion, Coriolis or bottom stress. Increasing the representation to P2

4 leads to a numerical
scheme creating no eddies in the wake of the island.

Figure 11. Time evolution of elevation and velocity (v-component) tide forcings measured in
November 1982 near the Rattray island.

3.3. Realistic tidal flows around the Rattray island

The previous section has shown that the DG scheme with appropriate boundary conditions does not
produce any spurious eddy and the numerical diffusion introduced by the scheme is not significative
compared with the subgrid-scale viscosity. We may now introduce the horizontal diffusion terms to
modelize those subgrid-scale processes. We use a variable viscosity as proposed by Smagorinsky
[43] and White and Deleersnijder [6], depending on the element size and on the velocity field
gradients:

�(x, y, t)=c
(d :d)1/2 (12)
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where 
 denotes the element area and d is the infinitesimal deformation tensor defined as d=
0.5(∇v+∇vT). The parameter c is a constant, which has to be correctly chosen to obtain the right
diffusivity and velocity amplitudes around the island. With this mesh and polynomial order, it is
set to 0.1.

The physical parameters are �=1000kgm−3, g=9.81ms−2 and �=2×10−3; the Coriolis
parameter is approached with the f -plane approximation, f =−5×10−5 s−1, corresponding to the
latitude of 20◦S and no wind forcing is considered. A second-order polynomial representation of
the bathymetry is used with a restriction on the minimum bathymetry value set to 3m to avoid
any wetting/drying process.

Figure 13 shows the typical elevation and velocity fields obtained around the Rattray island with
a curved coarse high-order mesh. Those results are in perfect agreement with the observations.
The same computation with a piecewise linear representation of the boundaries produces spurious
oscillations, which eventually lead to an unstable scheme. Indeed, with the use of the realistic
bathymetry, the elevation oscillations become even larger than the water elevation itself. The use
of an accurate representation of the boundaries is thus mandatory.

At the rising tide, a large clockwise rotating eddy is created on the southwest side of the island
after about 1 h. It grows and reaches approximately twice the width of the island [44]. A second
eddy is created in the western part of the island, but its size remains very small compared with
the eastern eddy and compared with the first computation with a flat bathymetry. It is due to the
very shallow bathymetry and the resulting high bottom stress. This smaller eddy that has not been
observed in situ has been already reproduced by many numerical schemes and models [6, 45]. As
the tide reverses, two counter-rotating eddies are generated on the northern side of the island. The
maximum variable diffusivity is located on elements close to the island and reaches approximately
5m2 s−1, which corresponds to the maximum velocities of about 1ms−1 observed in situ.

Currentmeters depicted in Figure 12 were deployed on 23 November 1982, during almost 14
days. Good agreement of the v-component of the velocity through time is observed in Figure 15.

Figure 12. Bathymetry isolevels (left) and currentmeters position (right) around the Rattray island.
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Figure 13. Typical elevation and velocity fields with tidal flows around the Rattray island on a coarse
mesh using a P3

4 representation. The very shallow bathymetry on the southeast part of the island tends
to reduce the size of the eastern eddy at rising tides (first two upper rows). The falling tide produces the

two observed eddies on the northern side (bottom two rows).
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Figure 14. Comparison of the evolution in time (in hours) of the u- and v-components of the velocity (in
ms−1) for some currentmeters. The DG results (continuous lines) and the measurements (dashed lines)
are in good agreement for the v-component. The u-component is in better agreement for currentmeters

close to the island, in the eddy region with larger amplitudes.

The evolution of the u-component, usually several orders of magnitude lower than v, does not fit
as well the data since the numerical results are highly sensitive to topological differences with
the real configuration. However, good agreement in velocity amplitude and time evolution for
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Figure 15. Comparison of the evolution in time (in hours) of the u and v-components of the velocity (in
ms−1) for some currentmeters. The DG results (continuous lines) and the measurements (dashed lines)
are in good agreement for the v-component. The u-component is in better agreement for currentmeters

close to the island, in the eddy region with larger amplitudes.
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Figure 16. Comparison between the experimental data (left) and the DG results (right). The numerical
results seem to fit the data with velocities of the right amplitudes and directions.

the currentmeters with a sufficiently high u-component is observed in Figure 14, i.e. in the eddy
behind the island. Figures 16 and 17 depict the velocity fields measured in 1982 and the velocity
field resulting from the DG computation at the same locations for several times. We observe that
the numerical results are in good agreement with the measurement, considering the uncertainty on
the bathymetry shape (measured on a 200m×200m grid), the island position, the currentmeters
locations and considering the simplified tidal flow forcing assumed to propagate following a straight
line parallel to the left and right boundaries of the domain. We obtain eddies of the same shapes
and intensities and the velocity evolution seems to fit the data.
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Figure 17. Comparison between the experimental data (left) and the DG results (right). The numerical
results seem to fit the data with velocities of the right amplitudes and directions.

4. CONCLUSIONS

We have applied the DG method to the shallow water equations to solve a tidal flow around a
shallow water island. Realistic parameters and data such as the tidal forcing, the bathymetry and
the complex island shape were used. We have observed the importance of the boundary numerical
representation in the context of ocean processes and especially quasi-steady tidal flows. Indeed,
with the test case of a constant mean flow around a circle and a slip boundary condition, the
shallow water equations present the same behaviour than the Euler equations: spurious oscillations
appear on poor discretized boundaries, especially with the use of high-order function space,
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irregular coasts and quasi-steady flows. In the framework of an ocean model with thousands of
coasts and islands, we cannot afford the same boundary discretization than for cylinder or airfoils
studies. With very complex bluff bodies and very coarse meshes, some usually perfectly working
techniques such as the smoothing of the normals may reveal inefficient to avoid oscillations and
spurious eddies, while a second-order mapping still leads to very smooth solutions. Moreover, the
continuous reconstruction of the normals on very coarse grids does not accurately represent the
islands’ shapes as the high-order curved meshes.

The Rattray test case highlights the fact that some non-physical eddies may have the right shapes
and amplitudes for wrong reasons when using piecewise linear representations of the boundaries
and high-order shape functions. Moreover, such a poor representation may lead to an unstable
scheme for some specific data as a strong varying shallow bathymetry. The DG method with
suitable boundary discretization provides an accurate model with a very low amount of diffusion
so that no spurious eddy is created. A physical diffusive term may then be calibrated to accurately
reproduce the subgrid-scale processes. The tidal flow around the Rattray island with the real
configuration has then been compared with in situ measurements. The DG results are in very good
agreement with the velocity data, considering the lack of accuracy on the tide direction, the island
shape or the bathymetry.

Let us finally mention that the generation of curved meshes for high-order polynomial mappings
is a critical issue in this framework, since the distortion of the elements has to be kept to a
minimum to avoid large quadrature errors leading to spurious waves. Major improvements to the
method could eventually be achieved by improving the mapping for high-order elements and by
implementing p-adaptivity to reduce the computational costs for multi-scale computations in large
domains.

Those preliminary results are quite promising and we believe that the DG method is a good
candidate for the creation of an ocean model on unstructured grids. Much of work has still to be
done as the extension of this bidimensional model to a 3D model or the extension to spherical
geometries.
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